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Abstract 
 

The search for an accurate and efficient protein conformation predicting method started around 

the end of the twentieth century with Anfinsen’s (Anfinsen, 1972) theoretical study on predicting 

the ribo-nuclease folding conformation. However, little progress has been made towards the 

empirical prediction algorithm for predicting the three-dimensional protein conformations.  The 

three most commonly accepted methods used in the past decade consisted of homology 

prediction, folding recognition, and ab initio. Our research takes the ab inito approach using 

computational genetic algorithm (GA) search and optimization method. The GA is based on the 

concept of natural selection for the “fittest” individuals, or most stable protein conformations. 

Previously, other groups have explored the similar GA-based method. Unlike nature, each step of 

the GA has many degrees of freedom that can be altered based on the preferences of the user.  

The most significant alteration to the genetic algorithm in our study was the fitness function and 

one additional genetic operator, adaptation.  Our fitness function is based on the potential energy 

calculation of an isolated protein. We have successfully developed a modified GA VBA program 

(Genetic Algorithm-based Protein Structure Search, GAPSS) that minimizes the potential energy 

of target sequence and generated a corresponding Cartesian coordinates for each atom. By using 

a three dimensional graphing software, Accelry’s, we were able to visualize the predicted 

conformation of a pentapeptide, enkaphlin, and compared to natural conformation. However, 

there were still discrepancies between the predicted and theoretical conformations, which 

suggests a more refined fitness function and perhaps a survival function should be applied.  
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Introduction 
 

Despite the effort to optimize the GA-based search and optimization method, little progress has 

been made toward the ultimate goal. According to Yang and Liu (Yang & Liu, 2006), there are 

two major problems associated with the prediction of three-dimensional protein structures from 

the amino acid sequence. The primary problem is that there is yet to be an efficient strategy for 

discriminating the native fold conformations from all the other misfolded or unstable immediate 

conformations.  By using the ab intio approach, the generated structures are being discriminated 

through the comparison of the free energies.  A protein has numerous possible intermediate 

conformations that could exist by slightly varying the positions of the backbone and side chains. 

The second problem associated with protein folding prediction is the time factor.  A protein folds 

in a matter of milliseconds, meaning that there is no possible way a protein has the time to apply 

the trial and error method of finding the correct fold conformation with the lowest amount of 

energy.  Therefore, a protein has been proved to have a folding pathway that allows the protein 

to reach its designated state in the short amount of time provided.  The protein folding pathway  

is also known as the energy landscape taking the shape of a funnel. In summary, the problem 

with protein folding prediction is that there is yet to be a time efficient method that effectively 

scans an extremely high dimensional space to find the native conformation.    

Protein Background 
 

Amino acids are the fundamental building blocks of the protein.  Every single amino acid in 

protein polymer has the same basic structure.  The amino acid structure contains a centralized 

carbon that is bonded to the following elements: a carboxyl group, an amino group, and a side 
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group usually referred to as the R-group (Residual).  The R-group is used as an important 

identification tool for the amino acids. 

 

Figure 1: Amino acid with the residue 
A peptide bond is formed between two amino acids through a dehydration reaction.  Multiple 

covalently bonded amino acids form a polypeptide.  The formation of a protein is divided into 

four primary stages beginning with the primary structure.  The primary structure of a protein is 

the unfolded sequence of amino acids.  The primary structure can also be viewed as the blue 

print to the formation of a more convoluted 3-dimensional protein conformation.   

 

Figure 2: Each bead is representative of an amino acid 

Following the primary structure is the formation of the secondary structure.  The secondary 

structure forms by following the blue print instructions that were made during the primary stage.  
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Alpha helices, beta sheets, loops, and turns are all formed during this stage due to the interactive 

energies such as electrostatic, ionic, non-bonded, and hydrogen-bonds.   All of these elements are 

used in sequence to form the 3-D protein structure, and are important to the structure of the 

protein because they help to stabilize the final protein structure. The secondary structure also 

initializes the beginning of the three dimensional formation through the development of the 

elements mentioned above. A typical β-sheet and a right-handed α-helix, a more common 

conformation for α-helix is shown in figure 3.   

 

Figure 3: The secondary structure formation of Beta sheets and alpha helices 
Alpha-helices form during the secondary structure of the protein because the amino acid acids in 

the sequence are forming hydrogen bonds with each other trying to stabilize the structure.  Alpha 

helices may either resemble a spring or a right-handed coil that twists clockwise.  Another 

possible secondary structure is the beta-sheet.  The beta sheets are formed by the hydrogen 

bonding of two strings of amino acids in a parallel or anti-parallel direction. The stability of β-

sheets depends intensively on the hydrophobicity, steric hindrance, partial charges of the nearby 

protein segment.   
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Figure 4: The tertiary structure formation with the combination of secondary structures 
The third level of protein folding is the tertiary.  The tertiary structure gives dimensional 

particular 3-D characteristics of the protein.  This stage of protein folding is assumed to be the 

most thermodynamically stable conformation, which suggests that the conformation has the least 

Gibbs free energy.  A portion of the commonly encountered proteins may actually carry on to 

what is known as the quaternary structure.  The quaternary structure is the bonding of several 

tertiary structures to form a globular unit.  The different tertiary groups are labeled as sub units 

that form the quaternary structure.    

 
Figure 5: The quaternary structure as a combination of subunits forming a globular unit 

 

Importance of Protein Folding 
 

Proteins are vital for the existence of life.  Proteins help to make up the formation of bones, 

muscles, hair, skin, and blood vessels.  They are important for the immune system as well 
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because they are able to recognize foreign invaders and send appropriate signals to stop the 

spreading of infection or disease.  Other evidence relating to the importance of proteins is the 

product of a protein misfold.  If the native conformation of the protein is mutated or folded 

incorrectly, the result can have a devastating impact on the organism.  For example, the dreaded 

Alzheimer’s disease is responsible for memory loss in the elderly generation.  Alzheimer’s 

disease is a result of a protein misfold of an unclear origin.  This brings about the discussion to 

the importance of protein folding prediction. The reason there is yet to be a perfected solution to 

the protein folding problem is because of all the possible conformations the protein could form.  

Predicting the structure is not as easy as determining the minimum energy conformation because 

that brings about problems on its own.  Since a protein can shift between several intermediate 

structures to its native conformation in as fast as a millionth of a second, so it is impossible to 

determine the folding path through observation. Instead other methods have been developed in 

order to determine the final structure of protein folding, such as ab initio.    

Protein Folding Methods 
 

The most contemporary protein folding methods can be categorized into three primary groups: 1) 

homology method, 2) folding recognition, and 3) ab initio. The first and most well-established 

method is homology method. Beginning with the discussion of the homology method of protein 

folding, homology folding uses a comparative modeling strategy. The protein to be examined is 

compared through the evolutionary progression of the related protein.   

The second method is known as the folding recognition method. Folding recognition method, 

like the homology method, uses a comparative strategy as well.  The protein to be evaluated is 

compared to a data bank of known proteins, and the sample protein is threaded through the 
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already known protein to determine the structure of the sample protein.  For this reason, this 

method is also known as threading.   

Ab initio is the third folding method that is used.  Ab initio uses a computer simulation to 

determine the final structure of the protein.  The thermodynamic properties of the protein are 

evaluated to determine the final structure.   

Genetic Algorithm 
 

The genetic algorithm (GA) approach to solving the protein folding prediction problem has 

received a great deal of attention due to the promising results that have been published in the past 

decade. The genetic algorithm approach is based on the Darwinian theory of evolution, also 

known as the ‘survival of the fittest’ concept.  The GA is compared to the process of mitosis 

beginning with two parent chromosomes.  Each chromosome contains information to the 

chemical make-up of the parent generation.  During the reproduction, the information encoded 

on the chromosomes may follow one of the following operators so that the diversity is 

maximized during the process: crossover, mutation, or, selection.  The operators occur naturally 

in biology because they help to create diversity among the offspring.  In the realm of protein 

folding, it is necessary that the best qualities of the parent proteins are passed to the offspring. 

The main goal of the genetic algorithm is to keep the diversity among the conformation while 

improving the overall fitness (Yang & Liu, 2006).   

Problems with Genetic Algorithm 
 

The genetic algorithm-based protein folding prediction method has yet to be perfected.  Several 

problems with this approach are the difficulty in encoding the information, determining the 

fitness of the individual and insufficient reproduction process. Proteins have been coded with a 
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binary code (a system of 1’s and 0’s) and even by using the alphabets.  Another problem with the 

genetic algorithm is that it obtains a set of lower free energy states rather than a single value.  

The reason the genetic algorithm is forced to give a set of possible values is because a single 

value will force the energy force field to prematurely converge trapping all the conformations.  

The third and most important problem, which will be discussed in more detail later in the report, 

is that there is no perfect fitness function.  The fitness function is used to judge the “fitness” of a 

protein, or in other words evaluate the total energy of the protein (Pedersen & Moult, Genetic 

algorithms for protein structure prediction, 1996).   

Genetic Algorithm Conventions 
 

The genetic algorithm starts with an initial population of random protein conformations.  The 

population numbers vary depending on the preference of the researcher.  The initial population 

generation methods also vary from researcher to researcher. After the initial population has been 

determined, an objective function is applied to the initial population.  The objective function is 

subjective to the user, but usually it uses a potential energy function that calculates the energy 

and the fitness is determined as a result of the objective function.  Next, the reproduction process 

takes place with the possible occurrence of one or all three operators: selection, cross over, or 

mutation.  Operators are rules that modify individuals and the population to include diversity to 

the process. The user has the option of altering the properties of the operators.  After the 

operators are implemented a new generation is produced.  The fitness of the new generation is 

evaluated, and based on the criteria of the program the process could go back to the objective 

function evaluation for another process.  The user also has the option of including a maximum 

amount of iterations to be used.  The GA stops on the occurrence of or two occasions one is that 

there is a solution or the GA has proved the impossibility of the reproduction.   
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Fitness Function Comparison 
 

Each step of the Genetic Algorithm has the possibility of being altered slightly depending on the 

user of the program.   Four different approaches will be discussed and evaluated.  All four GA’s 

follow the same convention, but all are altered slightly through the initial population, the 

objective function, fitness criteria, and operators. 

The first method that will be discussed is that of Agostini and Morosetti (Agostini & Morosetti, 

2003) based off their paper written in 2003.  The purpose of their paper is not to perfect the 

genetic algorithm, but to effectively weight empirical potentials in fitness function.  Agostini and 

Morosetti start with an initial population size of 150 to 250 proteins weighting the random choice 

of phi and psi angles for each residue using results based on the Brookhaven Protein Data Bank. 

Agonstini and Morosetti also include a sharing function in their genetic algorithm.  The sharing 

function is included as a way to keep the diversity as high as possible among the different 

conformations. The sharing function is defined as the distance between two structures.  The 

distance is found by subtracting the fraction of common residue conformations from the number 

one. When the equation is equal to 0, this means that the two conformations being compared are 

identical, and if the equation is equal to 1 the two conformations are completely different.    The 

fitness function (discussed below) is divided by the sharing function.   

Next, crossing over and mutator operators are used to create a new generation.  Within the new 

generation a method called ‘elitist generation replacement’ is used.  This means that they rank 

the parent individuals and the offspring’s based on their fitness level.  Only the conformations 

with the highest fitness level are used for the new generation.   Another strategy used for the 

selection of the fittest is the injection of new structures.  The injection of new structures involves 

a new value known as multiplicity. The multiplicity value is found by taking the mean value of 
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the sharing values divided by the population size.  The user picks a multiplicity value to be the 

standard (i.e. .50), and if the value of the structures are under the standard a new structure is 

injected in its place.  This method was included as a way of keeping diversity among the 

conformations.  The evolution process sometimes loses diversity, and as a generalization if 

diversity is lost then the efficiency of the genetic algorithm decreases. 

Agostini and Morosetti’s fitness function is essentially their chosen objective function (potential 

energy function) with each individual term multiplied by a coefficient.  The coefficient is a 

constant that is represented as the weight the term has towards the final conformation.  The 

equation shown below is what they have used for the fitness function and for a description of the 

terms used see Table 1 below.  

 Equation 1 

The results Agostini and Morosetti produced were quite impressive.  The table shown below are 

the results they received. The ultimate goal to test the weights determined for each potential 

energy term was to reproduce a structure with either a better fitness value or an equal fitness 

value to an experimental structure.  They succeeded in producing both 1000 to 10,000 iterations.   
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Table 1: Values of the final weights 
The next method discussed will be that of Cui, Chen, and Wong. (Cui, Chen, & Wong, 1998) 

They follow the conventional GA procedure, but they have added a few unique tweaks to the 

procedure.  They encourage taking the route of supersecondary structure prediction.  A 

supersecondary structure is a term that they have given to a secondary structure connected to a 

second secondary structure by a peptide containing one to five residues.  The one to five peptide 

chain connecting the two secondary structures are thought to play an important role because they 

are what influence the protein to fold.  The conformations of the residues can be classified into 

five major types.  The benefit of predicting the supersecondary structure is that the predicted 

structures will be used as restraints as a way of limiting the conformation space.  

Another tweak they add to the model is that in their potential energy equation they have only 

included two terms. A hydrophobic interaction and a van der waals interaction term.  They have 

determined that these are the most important terms to include because the hydrophobic 
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interactions are what drive the peptide chain to fold, and the van der waals forces are used to 

reject the incorrect compact structures during the hydrophobic collapse.  EHH is the hydrophobic 

term and  Evdw is the van der waals term. 

VDWHHTotal EEE +=   Equation 2 

Their GA procedure start with an initial population size of 500.  Although, it should be noted that 

their initial population was hardly chosen at random.  Their procedure is described in detail in 

their paper.  The potential energy of all 500 initial parent individuals was calculated and mapped 

onto a fitness scale.  The fitness function used is shown below: 

gnInerCC
EE
EE

CFitness

gn

gn
gnGl

⋅+=
−

−
+=

0

minmax

1max1
 Equation 3 

Egn,max is the highest individual’s potential energy in the gnth generation; Egn,min is the lowest 

individual’s potential energy in the gnth generation;  Egn,I is the ith individual’s potential energy 

C0 is a constant that is set to be .02; incr is increment of the ratio of fitness of the best individual 

(with lowest energy) to the worst individual (with highest energy) in each generation. 

 

After each generation, the individual with the lowest fitness had its fitness value set equal to one, 

the best individual is given the value 1 C0 1 incr · gn. This strategy was implemented as a way of 

focusing on the ration of the fitness of the best individual and the average fitness. Another added 

feature to their GA procedure is their crossover operation method.  The probability that an 

individual would be selected was determined by dividing the individual’s fitness by the 

summation of the fitness of all the individuals of the population.  Another operation that is 

included is mutation.  There were two mutation operators that could take place.  The first 
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operation had the possibility of changing the entire conformation and the second mutation 

operator focused on a more local search of conformational space.  

 

The next method discussed is proposed by Cox, Morimer-Jones, Taylor, and Jonston (Cox, 

Mortimer-Jones, Taylor, & Johnston, 2004).  This group has included creative genetic operators 

to help improve the efficiency of the GA model.  They begin with an initial population of 200 

individuals that is formed by the constructor routine, which generates a number of valid 

conformations at random.  Next, the fitness of each individual is evaluated by using the 

following equation where Ei is the energy term used (or the potential energy calculated) 

01.0+−= ii EF  Equation 4 

The .01 term is added so that even “open” structures with energies equal to zero will have a 

nonzero fitness; therefore, an equal opportunity to be selected for the crossover operation.  

Crossover and mutation operators follow the conventional format, but the team added a few new 

terms to the GA procedure.  The first additional operator is called the duplicate predator.  This 

operator works exactly how it sounds.  The operator is defined in the simulation as DPL 

(duplicate predator limit).  The DPL signifies the maximum number of times that a given 

structures is allowed to appear in the population.  For example, if the DPL is set equal to zero the 

operator is essentially turned off meaning that there is no restriction on the number of identical 

individuals.  The purpose of this added feature is to prevent the premature convergence of the 

population on a non-optimal solution. 

The next added operator is labeled ‘Brood selection’.  This operator is beneficial because instead 

of creating only two offsprings as a result of crossover it creates a pool of offspring where only 

the fittest offspring are selected to join the new generation.  There are two possible functions of 
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the brood selection that could be used. The first possible implementation is that the only the 

individuals in the ‘brood’ (or pool) are compared and the best two are passed on to join the new 

generation.  The second implementation involves not only the ‘brood’ population but the parents 

as well.  The whole family is evaluated and the two best (or fittest) members are chosen to move 

on to the next round.   

 
Figure 6: Schematic of GA used by Cox, Mortimer-Jones, Taylor, and Johnston 
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Methods 

Position Calculation 
 

 

Figure 6: Cartesian coordinate system illustrates the first four atom positions in the polypeptide chain 
The Cartesian coordinates were calculated using the dipole moment vector algorithm proposed 

by Erying in the early 1930’s.  By neglecting bond stretching and bond angle bending during 

protein folding, the bond angle and bond length values could be held constant in the calculations. 

All bond angle and bond length parameters for each atom used in atomic position calculation are 

proposed and confirmed by Scheraga(Sippl, Nemethy, & Scheraga, 1984). By fixing the origin 

of the coordinate system on the first hydrogen atom attached to the N-terminus, a series of 

coordinate system transformations by Euler’s angle and distance calculation could be utilized to 

locate the relative position of every single atom in the target molecule. The transformation and 

distance calculation matrix shown in equation 1 
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simplifies the computational process of the coordinate calculation. Using the modified position 

calculation method shown below, the locations of each atom in the target molecules could be 

determined in angstroms (Å).  
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Modified Genetic Algorithm 
 

The Genetic Algorithm (GA) is an search and optimization algorithm derived from the basic 

concept of natural selection process to refine a random search. Due to the user-directed searching 

algorithm, the GA is a more efficient searching method than the conventional Monte Carlo 

method. With the assumption of constant bond angles and lengths, the dihedral angles (torsion 

angles) are the only variables used in the optimization. Each set of torsional angles are treated as 

a single “chromosome” because each set contains a genetic “blue print” to the folding of a 

protein. All chromosomes will undergo a genetic operation as a chance to increase the diversity 

in the population.  The first generation, or seeding generation, is randomly generated between  -

180o and 180o with the exceptions of ring structures (e.g. tyrosine, tryptophan, and proline). The 

initial average and minimum fitness, or the total potential energy of the molecule at a certain 

folding state, is obtained from the total energy calculation consisting of electrostatic, van der 

waal, and hydrogen bond energy terms. The details of energy calculation can be found in 

sections III – VI. Due to the nature of this program, only mutation and crossover evolutionary 

operators are applied to the precedent generation. The offspring generation is pooled with the 

parent generation, and only the top 100 best fit molecules are selected for the subsequential 
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genetic operation. The global energy minimum is obtained when no improvement can be made to 

the minimum energy level after 20 sequential generations. The complete process flow diagram of 

the GA operation is shown in Figure 7. 

  Set GA Parameters

Initial Population  

Fitness Function 

Reproduction Process 

 

Genetic Operators: 

Selection 

 

Mutation

Offspring Generation 

Termination 
Criterion  End Program

 

Figure 7: Schematic of Genetic Algorithm 

 

I. Mutation and Adaptation Operator 
 

Mutations are defined in biology as naturally occurring random changes in the chromosome. The 

mutation operator in the protein folding prediction GA procedure, randomly chooses 10 to 30% 

of the total populations to mutate. Each mutating chromosome, or set of dihedral angles, 

randomly adds or subtracts 0o to 20o from the current dihedral angle value at four random points 

within the set of dihedral angles. The modified GA also compares the fitness of the mutated set 

of dihedral angles to that of the original set; by natural selection, the set with the higher fitness or 

lower total energy survives, whereas the one with the lower fitness is deleted. A detailed 
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schematic of the mutation process is illustrated in the Figure 8. Adaptation is a unique operator 

employed only in this modified GA program. Drawing analogy to the adaptation in nature, the 

adaptation operator in the modified GA utilizes the linear minimization method to further 

improve the fitness of the overall population in every generation. The linear minimization 

method uses the gradient calculation to minimize energy based on each dihedral angle within the 

molecule to optimize locally for a particular set of dihedral angles.        

 

Figure 8: Mutation Operation on a set of dihedral angles (Left); Crossover Operation on the Right 

 

II. Crossover Operator 
 

Crossover also known as the mating process is applied to each generation to improve the overall 

fitness of the population. The crossover process is illustrated in Figure 8. Crossover allows the 

offspring to combine the characteristics of both parents. Crossover operation used in this study 

selects two members of the population at random, and then performs an exchange of dihedral 

angle. Finally, the parents in the modified GA have only two adjacent “genes” or torsion angles 

that are exchanged between the parents at two random exchange points. The short sectioned 

crossovers are optimal in keeping the integrity of the good folding segment for both short and 

long peptides and in searching for the global minimum energy for both short peptides.   
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III. Fitness Function 
 

Previous experimental studies and theoretical analysis of the peptide folding prediction have 

shown that the native state of protein folding, or the functional conformation, has the lowest 

potential energy. The general form of the total energy consisted of contribution from the 

Coulombic interactions, Pauli Repulsion and van der Waal Interactions, and finally hydrogen 

bonding interactions Different forms of intermolecular energy are discussed in more detail in 

sections IV – VI.   

∑ ∑ ∑
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IV. Electrostatic Interaction 
 

All types of electrostatic interactions (1-4, 1-5, and long range) were determined using atom-

centered partial charges. These overlap normalized partial charges for each atom of every amino 

acid residue were chosen to represent a continuous charge distribution in the radial direction. The 

partial atomic charges were given by Scheraga (Sippl, Nemethy, & Scheraga, 1984), which were 

determined using the complete neglect of differential overlap/2 (CNDO/2) molecular orbital 

method. Since the CNDO theory assumes explicit interaction between all valence electrons and 

zero differential overlap, the slight discrepancies between experimental and theoretical values 

were reported by several groups. The potential energy involved in electrostatic or Coulombic 

interactions for any pair of atoms can be determined from 
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Where qi and qj are the partial atomic charges of the atom pair in electronic charge units, rij is the 

distance between the center of the two atoms in angstroms (Å), and D is the effective dielectric 

constant. Three hundred and thirty two (332) is the conversion factor used to give UElectrostatic 

potential in units of kcal/mol. Theoretically, the effective dielectric constant should vary with the 

polarization of the atoms and short and long range electrostatic interactions; however, due to the 

complexity of the calculations and the previous experiments, Scheraga has proven that using a 

value of 2 for all types of electrostatic interactions is a fairly accurate assumption. 

V. Nonbonded Interaction 
 

In integrating the nonbonded interaction between 1-4 and higher atom pairs, the Lennard-Jones 

“6-12” potential function was employed to represent the Pauli repulsion and van der Waals 

interatomic interaction. All the parameters used in the calculation were obtained from a rigid 

body crystal method with the assumption of no bond stretching and bond angle bending. The 

potential energy of any pair of atoms can be calculated from 

612 )()(
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C
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AFrijU klkl

Nonbonded −=  Equation 9 

where Akl is the repulsive coefficient initially determined from crystal calculation (then modified 

for each type of atom, see 
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 Equation 11, Ckl is the attractive coefficient 

obtained from the Slater-Kirkwood formalism 
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 Equation 10, rij is the distance between the center of two atoms (Å), and F is a penalty 

factor used to account for the short range nonbonded interactions (1-4 and 1-5 interaction). Since 

the 1-4 short range nonbonded interactions are highly restricted by torsion space due to the direct 
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bonding through the two center atoms and dominating effect of electrostatic force, a value of 0.5 

was used for 1-4 nonbonded interaction, whereas a value of 1 was used for higher interactions.   
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where e is the electron charge in electronic charge unit, h is the planck’s constant, me is the mass 

of electron in kg,  ak and al are the polarization constants obtained experimentally in 10-24 cm, Nk 

is a constant determined for each atom type.  
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where rg
kl are parameters determined using mean-value law from many different crystals at 

different temperatures. 

VI. Hydrogen Bond Interaction 
 

In treating hydrogen-bonded dimers within the peptide structure, a general hydrogen bond 

potential (GHB) energy “12-10” was used instead of the L-J “6-12”. Any pair of hydrogen-

bonded dimmers can be calculated using  
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where A’xy is the repulsive coefficient calculated from CNDO/2, and C’xy is the attractive 

coefficient for a hydrogen-bonded dimmer obtained from similar CNDO/2 empirical calculation, 

rij is the bond distance between proton donor (H) and acceptor (X). Both the repulsive and 

attractive coefficients vary with different types of hydrogen-bonded dimer. Previous study has 
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shown a good fit between the calculated potential and that of value from quantum mechanical 

(CNDO/2) and experimental dimerization results.    

 

3-D Graphing Software 
 

All 3-D protein structures were graphed using Accelrys DS Visualizer 2.0 from *.xyz Cartesian 

format. Accelrys DS Visualizers, a licensed freeware, can be obtained from www.accelrys.com 

with a permit. The XYZ translator, a custom-made VBA program was used to translate the GA 

output format to the recognizable xyz Cartesian format fit for Accelrys 2.0. All animations and 

superimposing structures were also created with Accelrys 2.0.  Accelrys DS Visualizer 2.0 

automatically connected atoms based on the proximity between atoms by recognizing the bond 

length with +/- 20%.   

Variations of the GA 

In order to find the most efficient GA, two different options have been made to the previously 

described GA.  The two separate additions were the binary and the secondary structure options.  

The two implementations were added as an effort to increase efficiency in the least amount of 

time.   

Binary Implementation 

The genetic algorithm has the option of taking the binary code approach.  The binary essentially 

uses the original VBA program, but there are a few adjustments made to the code.  One 

difference between the original and the binary code is that the binary code includes a converter 

program that will convert the torsion angles to binary numbers.  A binary number is a numerical 

notation that is written with a base of two, containing only 0’s and 1’s.  In order to make a binary 
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number that uses the least amount of digits, the torsion angle is divided into three different 

sections.  Using real numbers the torsion angles will range from -180 to 180 with a max of two 

decimal places. The first digit in the binary code signifies whether the angle is positive or 

negative.  The next nine digits will give the angle number ranging from 0 to 180. Finally, the last 

seven digits are reserved for the decimal places.  Altogether, each torsion angle will be 

represented by a 17 digit string of 0’s and 1’s.    

 

Another difference with the binary code is the way the operators are run. The binary code still 

includes both the mutation and crossover, but they are performed slightly different than the 

original GA.  After converted to real numbers, all the binary digits representing each different 

torsion angle on one chromosome, are combined into one very large horizontal string of 0’s and 

1’s.  The mutation operator works by randomly replacing 0’s as 1’s and 1’s as 0’s on the large 

string of digits.  The user is able to specify the percentage of digits to be mutated with the user 

interface. The second operator that is also in use is the crossover method.  There is only one 

crossover method that is used with the binary code.  The way that the crossover method works is 

by taking a random amount of digits on the chromosome string and exchanging it with another 

section of digits on another chromosome.  After the operators have been run the long string of 

binary digits is divided back up into separate torsion angles. Finally, another program has been 

installed to reconvert the binary string back to real numbers. The idea of combing the digits into 

one large number is that it will help to create more differentiation among the chromosomes, and 

differentiation helps to achieve the ultimate goal of reaching the native conformation with the 

lowest energy.   

 

Several problems have been noted with using the binary code.  The first problem is that both 
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operators create the possibility of dividing up specific numbers that are required to form rings on 

the side chains.  For example, the amino acid proline has a ring that is a side chain, and when 

torsion angles are in their binary representation and combined into to the long horizontal string 

of binary digits the crossover and mutation operators might disrupt the specific angles needed to 

form the ring; however, this problem was recognized and a solution was implemented. The ring 

structures of the amino acids are known and are recognized by the program.  Once the program 

recognizes the ring specifications, the program knows to preserve the specific angles.  Another 

possible problem that could occur during either of the operators is that the digits could be 

arranged so that the numbers are above 180.  For example, after the digits are divided back up 

into separate torsion angles and reconverted back to real numbers, a torsion angle might result in 

a value of 181 or anything above this number.  Clearly, this number is not a valid angle in the 

program and would cause problems. This problem is solved by having the program recognize the 

numbers that are greater than 180 and moving the decimal place to the left to correct the 

potential problem.  For instance, a torsion angle might have changed to 500.12, but once the 

program recognizes that the number is greater than 180 it will move the decimal place on place 

to the left so that it will become 50.012.   

In theory, the binary seems like it has the possibility of creating more differentiation and 

therefore resulting in conformations closer to the native; however, the main problem with the 

binary code is that it will require a large amount of time, even more time than the original GA.  

The reason is that the once five digit maximum torsion angles are being converted into seventeen 

digit numbers.  The overall idea of the project is to find a program that runs efficiently in the 

least amount of time possible, and the binary code does not fit the requirement. 
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Secondary Structure Implementation 

Because the vast majority of proteins include α-helices and/or β-sheets in their secondary 

structures, a genetic algorithm tailored to finding these protein structures was created.  The goal 

of this α-helix/β-sheet genetic algorithm was to provide a substantial increase in speed over the 

conventional genetic algorithm with which the most energetically favorable 3-D protein 

conformation may be found. 

At its core, the α-helix/β-sheet GA works very much like the conventional GA.  However, it 

differs by randomly assigning certain regions of each individual’s torsional matrix to become α-

helices or β-sheets.  This step is done during the random parents generation step, at the very 

beginning of the GA’s run sequence.  The secondary structures generated in this way are 

protected from mutations, though torsional angles outside the secondary structures are 

unprotected. 

Similar to the original GA, crossovers are included as well, but the crossovers are performed 

slightly different from the conventional GA as well.  The control parameters that govern each α-

helix or β-sheet within an individual are switched between the two parents of interest.  Then, the 

newly acquired α-helix and β-sheet regions, as governed by a parent’s received control 

parameters, are revised to reflect the structural change.  Side chain and branch torsional angles 

remain unaffected.  Regions on each parent that were formerly α-helix or β-sheet regions are 

revised to be random torsional angles.  One of the children is randomly chosen to survive.  This 

results in just one offspring per crossover.  The crossover step is then concluded, and the fitness 

of each parent and child is assessed.  The GA then continues as the conventional GA would have 

proceeded following crossover. 
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As stated above, the intent of this GA was to expedite the convergence of the conventional 

GA.  By giving the search a “head start” on finding secondary structures, the actual, most 

energetically favorable structures of polypeptide sequences known to contain α-helices and/or β-

sheets can more rapidly be found.  However, due to the inherent nature of this GA, it is not 

compatible with as many varied forms of crossover as is the conventional GA. 

Results and discussion 
 

Single AA Structure Conformation 
 

Trial GA simulations were tested on the 13 common amino acids to ensure the accuracy of the 

parameter entry and functionality of the modified GA VBA program. Each amino acid was 

generated from a random population of 20 sets of dihedral angles, and 20% of each generation 

was mutated and adapted to new generation. The GA algorithm terminates at the 10th consecutive 

generation with any improvement. Each amino acid was analyzed and compared to the natural 

state with the matched bond length and bond angle. The performance of the GA program was 

also analyzed based on the total number of atoms optimized per AA and the total number of 

generation takes to converge. The predicted structures of the 20 common AA’s were listed 

according to hydrocarbon residues, sulfur-containing residues, acid residues, and base residues.  

  

A  B  C
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Figure 9: (A) Gly structure; (B) Ala Structure; (C) Ile Structure 

 

Figure 10: (A) Val Strucure (B) Leu Structure 

Amino Acid No. of Atoms Total Generation Minized Energy

Gly 10 7 ‐2.35412
Ala 13 20 ‐0.653100124
Ile 22 19 ‐2.920599024
Leu 15 18 1.178935128
Val 19 27 ‐4.4653873  

Table 2: The performance analysis of hydrocarbon residues 

As demonstrated in Figure 9 and Figure 10, the single hydrocarbon residue amino acid matches 

its natural conformation with all bond angles and bond length matched the input parameter and 

theoretical calculation. According to Table 2, there is a positive trend between the number of 

atoms to be predicted and the number of total generations to converge; however, side chains and 

branches significantly increase the total generations needed to converge. In the case of Val 

compared to Leu, Val has 3 less atoms than Leu, but Val took 27 generations to converge, which 

is 8 more generations than that of Leu. Other single amino acids natural conformations are listed 

below, and all the parameters used in the optimization process matched with the input and 

theoretical with precision.  

A  B 
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Figure 11: (A) Met; (B) Cys; (C) Ser; (D) Thr; (E) Tyr; (F) Asn; (G) Glu (H) Gln 
 

GA parameter optimization 
 

In order to facilitate the assessment of the GA-based prediction, the experimental fragment of 

methylated enkephalin (EDA), Protein Data Base ID 1plw, was tested in different conditions to 

optimize the best set of the conditions to simulate similar length proteins. Minimization process 

terminates when the potential energy of the Met-EDA can no longer be minimized after 20 

consecutive generations. Met-EDA is an optimal protein to assess every aspect of the GA 

program, since it contains various types of amino acids that examine the program’s ability to 

integrate branches, aromatic rings, and convoluted hydrogen bonded dimmer interactions. The 

parameters to be optimized include: number of sets of dihedral angles in the initial population, 

number of consecutive generation need to exit the loop, and percentage of each generation 

A 
B 

C

D 

E 

F 

G

H
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mutated or adapted. The duration time for 2, 5, 20, 50, and 70 sets of the dihedral angles to 

converge were determined to be 4.3 min, 8.7 min, 25 min, 54.4 min, and 2.1 hour. The time 

required to compute each set and linear gradient minimization method exponentially increased 

with the increase of seeding population.   
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Figure 12: Energy minimization process in each generation 
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Figure 13: Predicted folding of Met-enkephalin with different initial population: 2 (A), 5 (B), 20 (C), 50 
(D), and 75 (E) 

By holding the generation limits and percentage of mutation and adaptation in each generation 

constant, we optimized the initial population for the modified GA. As the seeding population 

increased, the average energy of initial generation and overall minimum energy decreased 

dramatically from the initial seeding population of 2 to 5. However, higher the initial seeding, 

longer it takes for each reproduction process. Therefore, the initial population of 50 was chosen 

for the sub-sequential optimization steps to obtain the folding conformation, since it performed 

A 
B 

C

D 

E



Protein Folding Prediction 30 
 

most efficiently according to Figure 12. As shown in Figure 13, with the increasing initial 

population, the protein takes more and more complex conformations, since there were more 

chances to mutate and more models to compute with.  

After the optimization of initial seeding population of 50, generation limit was tested from range 

of 5 to 25 with increment of 5. The mutation and adaptation in this optimization step was still 

20%. The data was obtained and analyzed. The optimal generation limit was found to be 15. 

 

Figure 14: Predicted folding of Met-enkephalin with different seed population: 10 (A), 15 (B), and 20 (C) 

Finally with the initial seeding population and generation limit fixed, the mutation and adaptation 

rates were varied from 10% to 30%. The 30% was slight better than the 20% at minimizing the 

potential energy of the molecule; however, at high population optimization process 20% was 

significantly faster than the 30% mutation rate.   

Short protein structure prediction 
 

After determined the optimal operating conditions for the modified GA procedure and confirmed 

the energy and coordinates calculation employed by the modified GA, a series of short peptide 

chains were ran using the modified GA program and compared with the theoretical folding. The 

A 

B
C 
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preliminary test was conducted mainly to test the capacity of the GA program, the GA prediction 

was found to be at very low resolution, since improper torsion angle penalty function was not 

included and the spatial overlapping can easily occur at short range due to the dominating effect 

of electrostatic interaction. 

 Poly-Gly’s Chain 
 

A sequence of 5 Glycines (GGGGG) was simulated with the modified GA first to assess the 

consistency of the GA program. Since Gly is one of the most flexible common amino acids, a 

long chain of Gly’s can take many different conformations. The sequence of 5 Gly’s was 

simulated with an initial seeding population of 50 with 15 generation limit and 30% mutation 

and adaptation in each generation. The simulation was repeated 3 times and the 3 conformations 

were obtained from the GA program shown below. The 3 conformations showed certain 

similarities in folding of the backbone and slight different folding at the C-terminus. The results 

suggest that random mutation can lead to numerous local minimums, a more strict generation 

limit should be applied to ensure the consistency of the GA process.  

 

Figure 15: Three conformations used same GA parameters and processing conditions 
Enkephalin 
 

Methylated enkephalin-1 is a 5 amino-acid polypeptide known as L-neruopeptide, it is an analog 

of morphin. Understanding the enkephalin conformations could immensely aid the understanding 
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of human pain perception mechanism. Due to the simplicity of Enkephalin, many literatures have 

used Met-enkephalin to confirm the optimization methods. The predictions were obtained from 

20, 25, 30, 50, and 75 individual set of dihedral angles in the initial population with 15 to 20 

generation limits and 10% mutation rate each generation. ___ different structures were obtained 

from the GA calculation, however, there is no positive match against the theoretical and 

experimental results. After entering the theoretical dihedral angles into the GA energy fitness 

function calculation program, the fitness of the theoretical was -11.354 kcal /mol. Compared to 

the predicted models have the minimum potential energy of -3.1872 kcal/mol, which is 30% 

lower than the theoretical potential energy. The discrepancy between the theoretical and the 

predicted could be the reason of the conformational difference of dihedral angles within the 

residues of Met-enkephalin, a dihedral angle difference at the Phe position.   

 

Figure 16: Theoretical conformation of Met-enkephalin on the left and the predicted model on the right 
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Figure 17: Local minimum conformations predicted by the GAPSS 

GAPSS was also able to find numerous structures have linear gradient of zero, which suggests 

that the GAPSS was able to successfully locate the local minimum potential energy for 

enkephalin. These predicted conformations could be some stable intermediate folding structures 

after dissolving in water. However, most of these folding showed one common and puzzling 

feature: they all display the tendency to force the N-terminus and C-terminus close together. 

Because the fitness function used to evaluate the potential energy of each individual 

conformation overlook the contributions from the entropy and salvation energy. The possible 

formation of hydration shells that hinders the coiling of the protein chain structures were not 

present in the GAPSS prediction. With the inclusion of the entropic contribution and the 

salvation energy between the protein and the solvent, we would expect much more zero-gradient 

conformations that show the various backbone conformations.  
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 Figure 18: Energy profile and enkephalin conformations 

GAPSS with the adaptation operator can easily map out the potential energy profile of the 

protein folding. The energy profile of enkephalin folding for the best prediction shows an 

exponential decrease in potential energy as the GAPSS minimizing the potential energy. As 

shown in figure 18, a clear trend of folding from a rather linear form to the more coiled up 

conformation. This demonstrates GAPSS’s ability to plot out the energy minimization pathway. 

The results also demonstrated that GAPSS’s energy minimization mechanism is working 

properly. And with the energy decrease as the generation increase, the improvement becomes 

smaller and smaller. However, due to the less stringent GA parameters set at the beginning of the 

run. The continuous decrease of potenetial energy suggest that the energy located thus far might 

be a local minimum and more stringent GA parameters and more intelligent guided search could 

eventually lead to the global minimum conformation which is the most stable and natural state of 

the enkephalin conformation.   
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Figure 19: Energy profile and enkephalin conformations 

GAPSS was able to predict one conformation that show resemblance of the backbone folding 

when compared to the theoretical conformation. The RSMD was about 65.43 between backbone 

dihedral angles with one exceptionally large different occurring on psi-3. However, the side 

groups conformations are quite different between the theoretical and the predicted.  

 

Interleukin-1 bet A, 2I7B 
 

Interleukin-1 beta A, Protein Data Base ID 2I7B, is a polypeptide known as L-signaling protein. 

Only a segment of this rather long protein was used in the protein folding simulation. The 

segment range from 20 to 32, KIEINNKLEF, was predicted in this study. The predictions were 

obtained from 30 individual sets of dihedral angles in the initial population with 15 generation 

limits and 10% mutation rate each generation. As shown in Figure 20, the structure predicted is 

mainly stabilized by the hydrogen bonds between the H-X to O. Another dominating effect 
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shown in the prediction was the electrostatic interaction at short range, which caused the 

convoluted intertwining of the initial segment of the protein.  According to the Protein Data Base 

(PDB), this segment of Interleukin-1 is a hair pin loop between two beta sheets. The predicted 

structure displays a loop-like structure, which suggests the modified GA is predicting the basic 

structure of the sequence.    

 

Figure 20: Interleukin-1 beta A, 2I7B , structured predicted using initial population of 75 
Performance analysis of GA VBA program on large protein 
 

Myoglobin (PDB ID 1MBC) is a macromolecule with variety of amino acids consisted of 214 

atoms. The amino acid sequence of myoglobin is MNKALELFRKDI. This simulation run was 

mainly conducted to test the consistency and capacity of the GA VBA program for a large 

protein sequence. The molecule was simulated twice with initial seeding population of 50, 

generation limit of 15, and mutation and adaptation rate of 30%. Each simulation was run on 

different computers, the specification of each computer and running time are listed below. 
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Specification  Computer 1 Computer 2 

CPU Speed  2 Ghz  1.3 Ghz 

RAM  4 GB 512 MB 

Time Taken  4 hr 6 hr 
 

Table 3: Performance analysis of the GA VBA program. 

As shown in Table 3, the computer 1 with 8 times the Random Access Memory as computer 2 

could only out-perform the computer 2 by 2 hr. This suggests the limitations of the processing 

speed and VBA compiling ability. To further improve the capacity of the modified GA, coding 

in Visual C++.Net could improve the overall speed of the calculation due to C++’s direct 

interface with windows. The minimization method used in each reproduction process can also be 

improved by using the larger steps then refine to the smaller one, instead of taking minute steps 

in one direction constantly.  

The two myoglobin conformations are displayed in Figure 21. The two cores are similar with 

slight dihedral angles changes on the outer core of the protein folding. The mean squared 

difference (MSD) between two structures was found to be 15.234 Å. The data suggests that the 

modified GA VBA program is fairly consistent even at calculating large molecules. 
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Figure 21: Myoglobin structure predicted with same GA parameter and conditions 

 

Conclusion  
 

In conclusion, the GA algorithm has demonstrated its capability of obtaining the global minimal 

energy and ability to generate plausible natural conformations for the unknown proteins. 

However, the resolution and accuracy of the GA depends largely upon the fitness function 

chosen for the operation and the GA parameters optimization process. To further improve the 

prediction by the GA, more refined fitness function with improper torsion angle penalty, bond 

stretching, and bond angle bending should be used.  Also, weighting each individual term in the 

potential energy function brings about an interesting perspective. By determining the 

contribution of each term in the potential energy function and applying it to the fitness function 

may help to improve the efficiency of the genetic algorithm.  Other possible alteration of the GA 
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with the use of a various combination of operators may also improve the quality of the genetic 

algorithm.   
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